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A FLIGHT EVALUATION OF METHODS FOR PREDICTING VORTEX
WAKE EFFECTS ON TRAILING AIRCRAFT

Glenn H. Robinson and Richard R. Larson
Flight Research Center

INTRODUCTION

The introduction of heavy jet transport aircraft into commercial service has renewed
interest in vortex wake phenomena, particularly because the wakes from such aircraft
are potentially hazardous to small aircraft that may encounter them. In the interest of
promoting greater safety in areas of mixed air traffic, the National Aeronautics and
Space Administration was requested by the Federal Aviation Administration to evaluate
in flight the vortex wake effects generated by large jet aircraft and to assess the ade-
quacy of current methods for predicting such effects. The results of the flight evalua-
tion, which encompassed a fairly broad range of aircraft sizes and combinations, were
summarized in reference 1.

This study compares the results from reference 1 with the wake effects predicted
by several analytic methods in an effort to develop a reliable technique for estimating
minimum separation distances between aircraft of various sizes. Four analytic expres-
sions currently used to define the strength and persistence of vortex flow are considered.
The maximum rolling moment predicted by each method for trailing aircraft at various .
separation distances from the generating aircraft is compared with corresponding flight
data from reference 1 for various combinations of leading and trailing aircraft. A
modified analytic expression, which best represents the available flight data, is derived
and used to estimate the hazards of vortex wake encounters.

SYMBOLS

Physical quantities in this report are given in the International System of Units (SI)
and parenthetically in U.S. Customary Units. The measurements were taken in Cus-
tomary Units. Factors relating the two systems are presented in reference 2.

b, b wingspan of the generating and probe aircraft, respectively,
m (ft)

b, distance between wingtip vortices, -7;?*, for elliptic span loading
(ref. 3), m (ft)

by £ distance between flap outer-edge vortices, m (ft)

Cy, airplane lift coefficient, s
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rolling-moment coefficient

roll-damping derivative, per rad

dihedral derivative, per rad

lateral-control -effectiveness derivative, per rad

wing chord of the generating and probe aircraft, respectively,
m (ft)

mean wing chord, S/b, m (ft)

/
section lift coefficient, (Il"—c

section lift-curve slope, per rad

moment of mertla of probe aircraft about longitudinal axis,
kg-m? (slug-ft2)

gross weight per wingspan squared proportionality
constant, kg/m2 (Ib/ft2)

generalized viscosity constant, m2/sec (ft2/sec)
lift generated by wing, N (1b)

lift per unit span, N/m (Ib/ft)

roll rate, rad/sec

roll acceleration, rad/sec?

dynamic pressure N/m? (1b/ft2

wmg area of the generating and probe aircraft, respectively,
m? (ft2)

vortex age, sec

true airspeed, knots or m/sec (ft/sec)

gross weight of generating aircraft, kg (1b)

vortex vertical velocity, m/sec (ft/sec)

horizontal distance through vortex velocity field, m (ft)

angle of sideslip, rad



r vortex circulation, mz/sec (ft2/sec)

Tg Ty circulation strength of the flap and wingtip vortices, respectively,
m2/sec (ft2/sec)

T, ‘initial midspan vortex circulation, 4‘2’“) or Z—CII;—VS
(level flight), m2/sec (£t2/sec) "~ T

Ay incremental wingspan length, m (ft)

Aa incremental angle of attack, rad

6 lateral control deflection, rad

€ eddy viscosity constant, m?/sec (£t2/sec)

n fractional semispan length

v kinematic viscosity constant, m2/sec (ftz/sec)

p air density, kg/m3 (slugs/ft3)

Subscript:

max maximum

ANALYTIC CONSIDERATIONS

Three of the four analytic expressions considered in this study originated with
reference 4, in which the radial distribution of velocity through a potential vortex (zero
core size) is derived as a function of time. These expressions relate vortex vertical
velocity at any radial distance, y, to the vortex circulation with initial strength, T,

and have the following basic form:
2
woko (1 "
2wy
where v is a measure of viscosity within the flow. Variations of this basic equation
are shown as equations (2) to (4).

r -
W=l (1 _e Y2/ 4“) (ref. 5) )

where a value of v = 0.2 was used in this paper,

r
W= g [1 - eV 4“"‘6”] (vefs. 6, 7) 3)



where values of € = 0,.0002I'; and v =0 were used in this paper.

STt
T, —y2/(0.0042b2+o. 00012—2) |

W=2—1r_37 1l-e b> (ref. 8) (4)

' Each expression is identically proportional to vortex circulation. The expressions
differ in the approach used for describing vortex decay as a function of time.

In equation (2) the viscous force is expressed as an "effective kinematic viscosity, "
using a simple constant from references 9 and 10 which approximates highly stable
atmospheric conditions.

In equation (3) the viscous force is considered to be proportional to the shearing
forces produced by both kinematic and eddy viscosity. Eddy viscosity, caused by small-
scale turbulence within the vortex flow, is assumed fo be dominant. Further, the eddy
viscosity is assumed to be proportional to vortex circulation. The proportionality con-
stant was determined experimentally by flying a Venom aircraft across wakes of
Comet 3B and Vulcan 1 aircraft.

Similar assumptions relating eddy viscosity to generating aircraft wake circulation
were used in the derivation of equation (4). In this study, flight measurements reported
in references 6 and 11, and obtained by probing the wake of a Lincoln bomber and,
independently, the wake of a P~51 Mustang fighter aircraft were used to determine the
proportionality constant between eddy viscosity and circulation. A term proportional
to the wingspan of the generating aircraft was also included in the calculations to attempt
to account for initial vortex core size.

From a more current study of aircraft trailing vortex systems (ref. 12), which

involved flight and wind-tunnel tests as well as analytical considerations, the following
expression was derived:

72b y

(ref. 12) (5)

1-104
W'ﬁy— 0.16 + 0.16 log, {3.91 5 r—
\/1+ 0.0065 5

This equation and the analysis from which it was obtained depart basically from
equation (1) by suggesting that at full -scale Reynolds numbers vortex decay is not de-
pendent on viscosity. Rather, the study shows that the circulation through the core of
a turbulent vortex is proportional to the logarithm of the core radius. Further, the
decay in maximum tangential velocity is shown to be an explicit function of downstream
distance, while circulation at the core expressed as the product of maximum tangential
velocity and core radius remains constant with downstream distance.

To illustrate the range of variability between the four expressions, figure 1(a)
shows computed vertical -velocity profiles across a vortex wake 7. 41 kilometers
(4. 0 nautical miles) behind a C-5A airplane, The flight conditions used in the calcula-
tions were a nominal gross weight of 204, 120 kilograms (450, 000 pounds), an indicated
airspeed of 140 knots, and an altitude of 3810 meters (12,500 feet). The radius of the vor-
tex core can be approximated as the horizontal distance from the vortex origin to the peak
vertical-velocity point. Obviously, a short-span airplane in the wake vortex of the C-5A
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airplane would be subject to major differences in vertical velocity, dependmg on the
expression used.

Figure 1(b) illustrates the second primary variable: the change in vertical velocity
with time, or, as shown, separation distance between the C-5A airplane and a following
airplane. The calculations were based on equation (3).

The vortex centers in figure 1 were referenced to a common origin in the same
vertical plane relative to the C-5A semispan,

In general, the wide variation in computations of vertical velocity and core radius
emphasizes the sensitivity of these calculations to estimates of viscous decay within the
vortex structure. Further, the viscous effects themselves are difficult to estimate,
because they are dependent on meteorological parameters such as local wind gradients
and temperatures experienced during a specific flight-fest period.

Vortex~Induced Rolling Moments

By using the four equations and a spatial definition between the generator and probe
aircraft like that shown in figure 2, vertical-velocity profiles were calculated for a
number of conditions investigated during the flight tests reported in reference 1. Table 1
lists the flight conditions and the characteristics of the aircraft used in the study.

Vertical -velocity profiles across the right wingtip vortex, and including the left
vortex contribution, were computed by using the followmg general expression developed
in reference 5:

Right vortex Left vortex

T, - - 2
o) ]

The computed vertical velocities were converted to a rolling-moment coefficient by
instantaneously centering the probe airplane in the right-wingtip vortex of the generating
airplane, thereby creating a spanwise change in angle of attack in terms of the vortex
vertical -velocity profile as follows:

w(y)

W)
/‘WJV Ao(y) ~ ¥

This change in angle of attack produced, in turn, a rolling moment about the longitudinal
axis. Thus

Rolling moment = ZL(y)y
¢; Aa(y)ge(y)ydy
a
b/2
=c; ¥ NOIEWIYAY (7)
-b/2



and as a coefficient

c E/ 2
Rolling moment a =
C, = e 5 w A
l qsb Sbv }5?;2 ¥)e(y)yay (8)

Vortex-Induced Rolling Moments Measured in Flight

The effect of the vortex wake on the trailing aircraft was usually determined by
positioning the probe airplane slightly below the wake of the generating airplane's right
wingtip and then climbiiig through the wake. Maximum angular roll acceleration, the
corresponding roll rate, and the opposing lateral control input were measured each
time it was determined that the probe aircraft had intersected the wake of the generating
aircraft. (Reference 1 includes details of the flight-test procedure and examples of the
data analyzed. )

The following single ~degree -of-freedom expressions were used to extract rolling-
moment coefficients from the roll excursions experienced by the probe airplane:

Measured Vortex induced Aircraft aerodynamics

. — . o~ ;5‘_
Ixp = Rolling moment + qu<Cl55+ Cl BB + >V C; pp> 9)
Vortex -induced rolling-moment coefficient

_Ixp )
C; -—E—-S-'E-'—<Cl5ﬁ+ 2_\—/Clpp> (10)

Equation (10) does not account for rolling moments introduced by yawing excursions
of the probe aircraft. This contribution, although sometimes significant, was not
included because it was not possible to differentiate between true airplane yaw and the
transient sideslip vane response produced by the vortex flow angularity.

Span Load Distribution
Basically, the behavior of a trailing vortex system depends on the circulation pat-
tern across the wingspan. The lift produced per unit of span is in turn related to the
circulation at any point along the span, as stated by the Kutta-Joukowski theorem
(ref. 13), that is,
L/ =pvr (11)

The relationships that link local circulation with the local lift at any spanwise station
become (ref. 14):

L =cjeq (12)
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The total circulation in the trailing vortex system is then obtained from a spanwise sum-
mation of the circulation distribution across each half of the wing. Usually an elliptic
spanwise lift distribution is assumed and the total circulation is given by the well-known
relation

4L

To = 7ovE (14a)
2C VS
Ty =% (14b)

Although an elliptic loading assumption is generally satisfactory for a clean wing,
the loadings for takeoff or landing configurations are far from elliptic, because of
deflection of flaps, slats, spoilers, and other control devices which produce local
changes in the spanwise loading.

RESULTS AND DISCUSSION

In the following sections the structure of the vortex wake and the rolling moment
induced on several probe aircraft are considered for generating aircraft in both a clean-
wing configuration and flaps-down configuration. Rolling moments calculated by using
equations (2) to (5) are compared with available flight data for several combinations of
generating and probe aircraft. A prediction method is developed that best describes the
trend of the data, and is used to establish a criterion for estimating minimum separa-
tion distance.

Vortex Wake for a Clean-Wing Configuration

Span load distribution. — Calculated and wind-tunnel values of the spanwise distribu-
tion of loading and vorticity for the C-5A airplane in a clean-wing configuration are com-
pared in figure 3. The load distribution (fig. 3(a)) was obtained from wind-tunnel
pressure -distribution data and is compared with an elliptic span loading at the same
angle of attack. The flight conditions for this example are C; =0.81 and V =229 knots.

The difference in overall circulation strength between the integrated wind-tunnel and
elliptic span loadings is less than 3 percent.

The changes in trailing vortex strength due to differences in load distribution are
illustrated further in figure 3(b) in terms of the distribution of vorticity within the wake
streaming behind the wing. The vorticity, as discussed in detail in reference 15, is
proportional to the slope of the span loading curve at each span station. Discrete vor-
tices form along the span at the centroid of those areas which are bounded by zero, or
low vorticity values. In this example, vorticity is concentrated near the wingtip and,
to a small extent, at each engine pod location. Total vorticity, which is proportional to
total area under either span loading curve, remains nearly the same. Specifically,
vorticity contained within the tip vortex, n = 0.8 to 1.0, differs less than 1 percent



between the two load distribution curves.

Comparison of flight data with theory.— The example in the preceding section sup-
ports the assumption that spanwise loading on clean wings is elliptic, and that
equation (14) is a valid representation of the circulation in the tip vortices of clean-wing
configurations. On the basis of this assumption, rolling-moment coefficients were cal-
culated as a function of separation distance, or vortex age, using equation (8) in con-
junction with equations (2) to (5). Results for the various combinations of probe and
generating airplanes investigated are shown in figures 4(a) to 4(f). For comparison
with these results, the vortex-induced rolling-moment coefficients based on measured
roll responses of the probe aircraft were calculated using equation (10). The compari-
son is made in terms of the ratio of the vortex-induced rolling moment to the maximum
lateral control power available to the probe airplanes at each flight condition. Flight
conditions and pertinent aerodynamic data are given in table 1.

The flight data show large variations in the rolling-moment ratios at similar sepa-
ration distances. This variation reflects the difficulty of maneuvering the probe airplane
so that it consistently intersected the trailing vortex core. Hence, for the purpose of
comparing calculated and flight-measured rolling-moment ratios, each of the expressions
was related conservatively to the uppermost boundary formed by the flight data. No
single expression consistently provided an upper boundary compatible with the flight
data. Rolling-moment ratios computed with equation (2) were usually about double the
flight values. (See figure 4(a) for a representative comparison.) Consequently, this
expression was eliminated. The best approximations of the upper limit were provided
by equations (3) and (5); the rolling-moment ratios given by equation (4) were low. The
vortex decay rate (decrease in rolling-moment ratio with increasing separation) of
equation (5) is lower than for either equation (3) or equation (4).

To summarize, the maximum vortex-induced roll response obtained in flight from a
fairly representative sample of probe and generating airplane combinations was approxi-
mately comparable to the roll response given by two of the four analytic expressions
under consideration. Also, within a separation distance between the probe and genera-
ting airplanes of 14. 8 to 18.5 kilometers (8.0 to 10.0 nautical miles), both the measured
and computed maximum rolling moments generally exceeded the maximum lateral control
power of the probe airplane.

Vortex Wake for Flaps-Down Configurations

Span load distribution. — Results of a parallel assessment of the analytical methods
in relation to the flight data of reference 1 are given in figures 5 to 10 for various
landing-flap configurations of the generating aircraft. Figure 5 illustrates the deviation
from elliptic loading when wing flaps are deployed. Data were obtained from C-5A wind-
tunnel pressure-distribution measurements, and the wing spanwise load distribution was
determined for the power-approach configuration (25° flaps). Calculated values were
computed for a flight condition corresponding to Cy, = 1.11 at V = 169 knots. As shown
in figure 5(a), the wind-tunnel and calculated values of total circulation strength in the
trailing vortex differ less than 1.5 percent, based on the area beneath the span loading
curves. However, the distribution of vorticity across the wingspan, shown in figure 5(b),
differs markedly between the two span loading curves. The vorticity is concentrated
near the inner and outer edges of the flap and near the wingtip. Separate vortices form




at these locations, with the vortex at the flap inboard edge rotating counter to the two
outboard vortices. Approximately 14 percent of the total vorticity is distributed from
the centerline to 7 =~0.675, an additional 46 percent is produced at the flap outer edge
(n =0.675 to 0.840), and the remaining 40 percent is produced at the wingtip. The
hazard to small following aircraft is reduced at the flap inner edge vortex (n=0.17) by
the adjoining counterrotating vortex on the opposite wing panel, but the two corotating
vortices near the wingtip (7 =0.77, 0.98) remain a hazard,

The individual vertical velocity profiles of the two corotating vortices near the
wingtip are shown in figure 6. The profiles were calculated for a separation distance
of 1.85 kilometers (1.0 nautical mile) using equation (6) modified as follows to account
for the vortex at the flap outboard edge:

Right-tip vortex Left-tip vortex

I, -2 ~(y+by)?/kt
w(Y)='2-§r-[:%;(1—eY/kt>-yibV(1—e v )]

Right-flap vortex

f
- +——/ /kt
-————ngf 1-¢ ' 2 2 i (15)

2 2

where T¢ and r, are the circulation strengths of the flap and wingtip vortices deter-
mined from the corresponding areas under the vorticity distribution curve and byg is

the flap vortex span. Although this simple linear model fails to account for coupling
between the velocity components, it does give some insight into the vortex structure.

In particular, a canceling effect is shown in the vertical velocity between the vortex
cores. The magnitude of this canceling effect is a simple function of the vertical-velocity
gradient across each vortex core and the distance between cores. The effect, reported
in reference 6, is further illustrated in figures 7(a) to 7(c), in which vertical-velocity
profiles are presented for separation distances of 1.85, 5.56, and 9.26 kilometers

(1.0, 3.0, and 5.0 nautical miles). As shown, the attenuating effect diminishes with
time and eventually approaches the single vortex representation.

Comparison of flight data with theory. —The flight condition used in the calculations
for figures 5 to 7 was taken from one of the flight-test series reported in reference 1.
In figure 8 the flight-test data obtained during this series are presented with corres-
ponding analytic curves for the single and the double vortex wake system. For the double
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vortex system, each corotating vortex was assumed {o precess about the other so that
the two vortices followed a path around a rotation point midway between them. The
probe airplane, a Learjet 23, was positioned at this midpoint location. (See refer-
ences 6, 15, 16, and 17 for detailed analyses of multiple vortex systems.) The data are
presented as the ratio of the coefficient of the rolling moment induced by the vortex wake
to the maximum lateral control power of the probe airplane at the flight condition inves-
tigated. This ratio is plotted as a function of the separation distance between the air-
craft.

Figure 8 shows that the magnitude of the roll excursions experienced by the Lear-
jet 23 varied widely and in one instance exceeded three times the available roll control
power. On the basis of figure 7(a), the Learjet 23 airplane, with a wingspan of
10.4 meters (34.1 feet), could be totally immersed in the C-5A wake, making the roll
response of this short-span airplane particularly sensitive to the vortex circulation.

Recent studies indicate the vortex structure to be comprised of strongly coupled
circumferential and axial flows which greatly affect the distribution of lift on an aircraft
penetrating the wake (refs. 18 to 20). The large variation in the magnitude of the cal-
culated rolling moments shown in figure 8 further illustrates the sensitivity of the short-
span aircraft to even the simple changes in velocity gradient considered herein.

The Cessna 210 and the F-104 aircraft are also sensitive to large aircraft wakes.
Both of these short-span aireraft were used in reference 1 to probe the C-5A wake,
although only limited quantitative data were obtained with the Cessna 210 airplane. The
F-104 airplane, which has a wingspan of 6.7 meters (22.0 feet), experienced the most
violent roll upsets in the program. (See reference 1, figures 3(a), 3(d), 3(e).)

In figure 8 for a separation distance of approximately 13. 0 kilometers (7.0 nautical
miles), the single vortex model represented by equation (5) is in best agreement with
the flight measurements, which conflicts with the preceding span load analysis. How-
ever, for the double vortex solution, the probe airplane was positioned midway between
the two vortices. As shown in figure 9, if the probe airplane had been displaced later-
ally toward either the flap or wingtip vortex, the rolling-moment ratios would have been
somewhat closer to the flight measurements. Even then, however, the peak flight values
of rolling-moment ratio shown in figure 8 are twice the maximum calculated value.

Figures 10(a) and 10(b), together with figure 8, illustrate the effect of the C-5A
wake on progressively larger aircraft. In general, the maximum rolling excursions
experienced by the McDonnell -Douglas DC-9 and Convair 990 airplanes, although of less
magnitude than that experienced by the Learjet 23 airplane, still exceeded the available
roll control power at separation distances less than approximately 9 and 5 kilometers
(5 and 3 nautical miles), respectively. The influence of the double vortex wake on the
rolling moments of the larger probe aircraft is proportionally less, which suggests
that the vortex structure created by the flap and tip vortices has less influence on the
overall lift distribution of the larger probe aircraft.

Although these limited flight measurements do not establish the validity of the double
vortex model, pilots consistently described the wake produced during flaps-down tests

as less coherent, less well defined, and of larger diameter than the wake from the clean~
wing tests.

Figures 10(c) and 10(d) complete the comparison of flight measurements with
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theoretical estimates. For these comparisons, the calculated curves are based on
elliptic loading and equation (14), because of the lack of span load distribution data for
the generating airplane. The figures again illustrate the relative effect produced on a
small and a large probe airplane when subjected to a vortex of common size and strength.

From the data presented, it appears that for both clean and flaps-down wing config-
urations, equation (3) and equation (5) provide conservative estimates of vortex strength
and decay with time as compared with the flight-test results, and equation (4) gives low
estimates of vortex strength. In the critical separation range for terminal operations
(approximately 4 to 9 kilometers (2 to 5 nautical miles)), vortex strength may be over-
estimated for landing-flap configurations if the computations are based exclusively on
elliptic span loading. More realistic estimates of vortex strength will result from
detailed analytic and experimental studies of multivortex systems. The simple analytic
models of vortex structure considered herein, when applied to small airplanes with wing-
spans near the vortex core diameter, were particularly deficient in representing the
induced airloads and moments on the probe aircraft.

Estimation of Minimum Separation Distance

An assessment of vortex strength independent of the measured probe airplane
response was obtained from the program pilots who were asked to establish a minimum
safe separation distance for each test series. The assessment was made considering
the structural integrity of the probe airplane, passenger comfort, possible loss of con-
trol during IFR flight conditions, and the hazards of maneuvering close to the ground.
This information was particularly useful because the pilots were best able to evaluate
each roll upset relative to the degree with which the airplane was centered in the wake.
The pilot assessment of minimum separation distance is compared in figures 11(a) and
11(b) with distances calculated with equations (3) and (4) for all the combinations of probe
and generating airplanes considered in figures 4 and 8. The minimum separation dis-
tance was arbitrarily defined as that distance where the rolling moment computed
by each analytic expression was equal to the maximum available lateral control power

((7—5-1—- = 1), The two flagged points shown in the figures were not included in the

§ max

flight tests, thus 18.5 kilometers (10. 0 nautical miles) is an estimated minimum sepa-
ration distance based on excursions experienced when the airplanes were tested in the
landing configuration. '

Figure 11(a) compares the pilot assessment with vortex decay rates calculated with
equation (4). The figure shows, again, that equation (4) underpredicts vortex activity.
An opposite trend is shown in figure 11(b), in which the pilot assessment is compared
with calculated vortex decay rates from equation (3). In this instance, the calculated
minimum separation distance is conservative.

On the basis of the maximum lateral control power criteria, decay rates computed
with equation (5) produced excessively large separation distances; thus this equation was
eliminated from the remaining analysis.

Relationship to wingspan ratio. — The ratio of probe airplane to generating airplane
wingspan has been used as a correlating parameter of vortex interference for various
airplane combinations (ref. 6, for example). References 21 to 23 also suggest wingspan
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ratio as the pertinent parameter for defining vortex hazard. In essence, these studies
assumed that a vortex encounter would not be dangerous when the maximum steady roll
capability of the probe aircraft exceeded the circulation around the vortex. Expressed
algebraically, ‘

(To) s < I (Dmaxh. .
generating airplane 2 \*max probe airplane (16)

A relationship between the gross weight and wingspan of the generating aircraft may
be generalized as

W = Jb? (17)

where J =~ 24 to 98 kg/ m2 (5 to 20 Ib/ft2) for a fairly large sample of conventional air-
craft configurations. Also, as a single-degree-of-freedom approximation, maximum
roll rate may be expressed as

Clmax 5y

Pmax ® Clp 5 (18)

By using these equations, an expression can be derived which defines aircraft combina-
tions capable of producing a vortex hazard to the trailing aircraft. This expression,
formed by simple substitution of equations (14a), (17), and (18) into the inequality

(eq. (16)), simplifies to

b (19)

probe airplane

C
23 _q [ Cloimax
w2 b\ Cpy

The expression is plotted in figure 12 versus wingspan ratios for all the aircraft com-
binations considered. As shown, wingspan ratio is the predominant variable, with the
aerodynamic terms of the expression providing essentially linear scaling. The figure
shows the change in the threshold between safe and hazardous separation as the size and
wing loading of the generating airplane progresses from a light airplane (J ~ 24 kg/m?2
6 1b/£t2)) to a jumbo jet (J ~ 98 kg/m2 (20 Ib/ft2)).

In figure 13 minimum separation distances calculated with equations (3) and (4) (as
presented, and as expanded for flaps-down configurations as in equation (15)) are plotted
against the wingspan-ratio parameter, The trend produced by equation (4) generally
underestimates the current minimum separation distance required by the Federal Aviation
Administration for terminal operations (ref. 24), whereas equation (3) generally over-
estimates it, More important, both equations show that separation distances should be
increased as the wingspan ratio increases, when most evidence indicates the opposite.

Modified vortex velocity equation. — A detailed comparison of the vortex-induced
rolling-moment trends predicted by equations (3) and (4) with the maximum flight-
measured rolling moments reveals that a simple interpolation between the two equations
as functions of wingspan ratio provides a reasonable fit with most of the flight data.

Both equations were originally derived by semiempirical methods from common flight-
test results, so a linear interpolation does not violate the assumptions or basic relations
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used in the derivations. On the basis of these considerations, the following relationship
was derived for wingspan ratios from approximately 0,1 to 0. 8: '

To -y2/0.0008 T'ot ~y2/(0.0042b2+0. 00012 ¢y Tt
W(interpolated) ~ 27y {1 - [Ale %+ Age av o)

(20)

where
A1 =1-Ay

Ay = 1.66b/b - 0.259

Figures 14(a) to 14(k) combine the flight data from figures 4 and 8, the pilot assess~-
ment of the minimum separation distance, and the rolling-moment-ratio curves calcu-
lated by using equation (20). The interpolated curves form a fairly representative upper
boundary, except for the combinations of probe and generating aircraft with the lowest

wingspan ratios. For these combinations, as shown in figure 14(g), much larger roll
upsets could be experienced. '

To assess the validity of equation (20) and maximum lateral control power as cri-
teria for establishing minimum separation distance, the calculated minimum separation
is correlated with the pilot assessments and wingspan ratio in figure 15. Although the
data are scattered, figure 15(a) shows the proposed criterion to be fairly representative
of the pilot assessment. Figure 15(b) shows the proposed criterion to be somewhat con-
servative relative to the current criterion of reference 24, for separation distances
greater than approximately 9 kilometers (5. 0 nautical miles), that is, wingspan ratios
less than 0,5, The proper trend of increasing separation distance with decreasing wing~
span ratio is established, however, For airplane combinations with wingspan ratios
less than about 0.2, separation distances should be greater than that given by equation
(20).

Figure 16 compares the minimum separation distance calculated with equation (20)
with the vortex hazard expression derived in equation (19). Although there is scatter in
the data, this summary indicates that about half the combinations tested would experience
vortex-induced rolling moments in excess of available roll control power. This number
is somewhat less conservative than the number of combinations requiring increased
separation based on the wingspan ratio relationship (fig. 15(b)). Both methods, however,
indicate that the greatest hazard exists for aircraft combinations with wingspan ratios
less than about 0.4 to 0.5.

CONCLUDING REMARKS

Rolling moments induced on several probe aircraft by the vortex wake from large
transport aircraft were calculated with four analytic expressions and the results com-
pared with flight data for corresponding combinations of generating and probe aircraft.
No single expression consistently predicted the magnitude of the induced rolling moments
experienced in flight. A simple interpolation between two of the expressions, however,
provided an empirical expression which could be used to estimate minimum safe

13



separation distances. This expression was applied successfully to probe and generating
airplane combinations with wingspan ratios in the range from 0. 3 to 0. 8, but tended to
underestimate the induced effects on small aircraft that would be completely immersed
in one of the rolled-up vortices.

In general, the maximum induced rolling moments exceeded the lateral control
power of most of the probe aircraft considered within minimum separation distances
normally maintained during landing and takeoff operations.

Flight Research Center,
National Aeronautics and Space Administration,
Edwards, Calif., June 20, 1972.
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Lateral distance from center plane, ft
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(a) Vertical-velocity profiles computed with four expressions for a separation distance
of 7.41 kilometers (4.0 nautical miles).

Figure 1. Computed variation of C-5A vortex wake vertical velocity with lateral dis-
tance and time. Airspeed = 140 KIAS; W = 204, 120 kilograms (450,000 pounds);
altitude = 3810 meters (12,500 feet).
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Lateral distance from center plane, ft
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(b) Vertical velocity profiles as computed with equation (3) for three separation dis-
tances.

Figure 1. Concluded.
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Aircraft separation distance, n. mi.
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(d) Probe airplane: Learjet 23, V = 240 knots, CZGG max = 0.0472; generating air-

plane: Convair 990.

Figure 4. Continued.
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Aircraft separation distance, n. mi.

1 2 3 4 5 6 7 8
{ | ! | | | | |
2.5 — .
O Flight data
2.0
Equation
L5 — 5)
i
Clt-,(’max
1.0 6)
oo
oy
o° 9o
o)
S
o @
o © %
Ooo o)
0 | | | ] | | J
2 4 6 8 10 12 14 16

Aircraft separation distance, km

(f) Probe airplane: Cessna 210, V = 149 knots, C 16 6max = 0.0560; generating air~

plane: CV-990, V = 195 knots.

Figure 4. Concluded.
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Lateral distance from center plane, ft
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Figure 6. Net spanwise vertical-velocity distribution resulting from wingtip and flap
outer-edge vortices as computed with equation (3). C-5A airplane; power approach
configuration; V = 169 knots; separation distance = 1.85 km (1.0 n. mi.).
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Lateral distance from center plane, ft
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(a) Separation distance = 1.85 km (1.0 n. mi.).

Figure 7. Calculated (eq. (3)) wingtip and wingtip-plus-flap vortex systems as a func-
tion of semispan length for the C-5A airplane in the power approach configuration.
V = 169 knots.
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(b) Separation distance = 5,56 km (3.0 n. mi.).

Figure 7. Continued.
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(c) Separation distance = 9.26 km (5.0 n. mi.).

Figure 7. Concluded.



Aircraft separation distance, n. mi.
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Figure 8. Comparison of calculated and flight-test rolling-moment ratios for the
Learjet 23 (probe airplane) and C-5A (generating airplane) in the power approach con-
figuration. V = 169 knots; C; 55ma.x = 0.0463.
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Figure 9. Change in rolling-moment ratio with lateral displacement of probe airplane
Probe airplane: Learjet 23;
generating airplane: C-5A; power approach configuration; V = 169 knots; separation

across wake cross section as computed with equation (5).

distance = 13.0 km (7.0 n. mi.).
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Aircraft separation distance, n. mi.
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(c) Probe airplane: Learjet 23, landing configuration, V = 181 knots,

cZ6 0 max = 0-0455; generating airplane: Convair 990.

Figure 10. Continued.
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Aircraft separation distance, n. mi.
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Figure 10. Concluded.
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(a) Wetmore and Reeder expression (eq. (4)).
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(b) Kerr, Rose, and Dee expression (eq. (3)).

Figure 13. Variation of calculated minimum separation distances in terms of the wing-
span ratio of the probe and generating aircraft.
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Aircraft separation distance, n. mi.
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Aircraft separation distance, km

(c) Probe airplane: DC-9, clean configuration, V = 216 knots; generating airplane:

Convair 990.

Figure 14. Continued.
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Aircraft separation distance, n. mi.
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(d) Probe airplane: Learjet 23, clean configuration, V = 240 knots; generating airplane:
Convair 990,

Figure 14. Continued.
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Aircraft separation distance, n. mi.
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(e) Probe airplane: Learjet 23, clean configuration, V =240 knots; generating airplane
DC-9.

Figure 14. Continued.
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Aircraft separation distance, n. mi.

1 2 3 4 5
| i | T |
2.0 = o Flight data

L5

Minimum separation
(pilot assessment)

Cl \l
Clbsmax 1.0
\luaﬁon
(20)
51— ° o
(o)

| | l |
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Aircraft separation distance, km

(k) Probe airplane: DC-9, landing configuration, V = 181 knots; generating airplane:
Convair 990.

Figure 14. Concluded.
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